Vulnerability evaluation and strengthening criteria for R.C. bridges

P.E. Pinto e G. Monti (A cura di)

 

 

INDICE

 

 

1

Introduction

4

2

Bridge systems

9

2.1  Analytical seismic assessment of the bridges on a highway system

9

2.2  Screening of the bridges to be examined

10

2.2.1  Hazard analysis

11

2.2.2  Natural seismic resistance

12

2.2.3  Final selection of bridges

14

2.3  Evaluation of the bridges

15

2.3.1  Outline of the procedure

15

2.3.2  The data bank SAMOA

16

2.3.3  Simulated design of the piers

17

2.3.4  Evaluation procedure

17

2.3.5  Quantification of risk

19

2.3.6  Selacted results

21

2.4  Acceptance criterion

23

2.4.1  Calculation of f P for g A = 0.35g

24

2.5  Results and conclusions

26

2.6  References

26

3

Important Phenomena affecting the bridge response

27

3.1  Multi-support excitation

27

3.1.1  Soil motion

28

3.1.1.1  Spatial model for ground motion

28

3.1.2  Convertional bridges

36

3.1.2.1  Design of the bridges

37

3.1.2.2  Elastic response

39

3.1.2.3  Non linear response of bridges to multi-support excitation

44

3.1.2.4  Bridges with non-synchronous design

44

3.1.2.5  Bridges with synchronous design

47

3.1.2.6  Conclusions regarding conventional bridges

49

3.1.3  Isolated bridges

52

3.1.3.1  Bridge model and equivalent stiffness and damping ratio of the isolator

52

3.1.3.2  Equations of motion of the bridge

53

3.1.3.3  Response of the isolators

54

3.1.3.4  Treatment of damping

55

3.1.3.5  Iterative procedure

56

3.1.3.6  Design of the isolated bridge

57

3.1.3.7  Results of the analyses 

58

3.1.4  References 

65

3.2  Soil-structure interaction

68

3.2.1  Mechanical model and equation of motion 

71

3.2.1.1  Superstructure

71

3.2.1.2  Foundation and foundation soil

72

3.2.1.3  Effective damping of the soil-structure system

74

3.2.1.4  Seismic input

75

3.2.1.5  Equation of motion

75

3.2.2  Cases examined

76

3.2.3  Results

79

3.2.4  Conclusions

86

3.2.5  References

86

3.3  Vertical oscillations

88

3.3.1  The analyzed structures: geometry and dimensioning  

89

3.3.2  The numerical models for non-linear time-hystory analyses

93

3.3.3  Results of non-linear analyses 

95

3.3.4  Simple mechanical model for axial vibrations

101

3.3.5  Conclusions

105

3.3.6  References

106

4

 Upgrading of bridge piers with FRP

108

4.1  Properties and behavior of FRP-confined concrete

108

4.1.1  Basis model for unconfined concrete  

108

4.1.2  Concrete model with elastic confinement

110

4.1.3  Some considerations on modeling concrete confined with steel or FRP

112

4.1.4  Comparison with experimental results

116

4.1.4.1  Tests by Picher et al. (1996)

117

4.1.4.2  Tests by Kawashima et al. (1997) 

118

4.1.4.3  Tests by Mirmiran and Shahawy (1997)

119

4.1.5  Predictive equations of FRP-confined concrete properties

121

4.1.6  Agreement with experiments

122

4.2  Response of FRP-wrapped sections

124

4.2.1  Assessment of FRP-confined section model

128

4.2.2  Parametric study on FRP-confined sections

130

4.3  Design criteria for upgrading through FRP wrapping

134

4.3.1  Upgrading index of FRP-wrapped pier sections

135

4.3.2  Mechanical Model of the Upgrading Index

136

4.3.3  Considerations over the error functions E

140

4.3.4  Comparison between analytical and numerical indices

141

4.3.5  Use of the upgrading index for design of FRP jackets

144

4.3.6  Design Example

146

4.3.7  Ductility upgrading of piers in seismic regions

146

4.4  Conclusions

148

4.5  References

149

 

 

TESTO (formato pdf)

 

Copertina